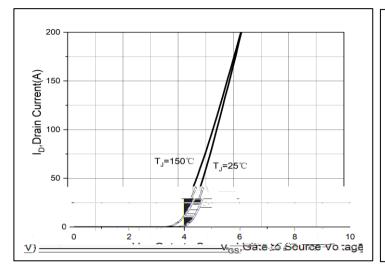
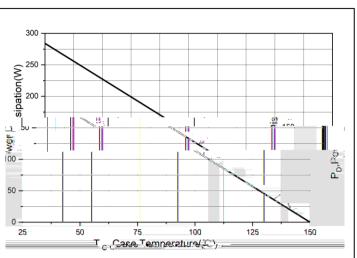


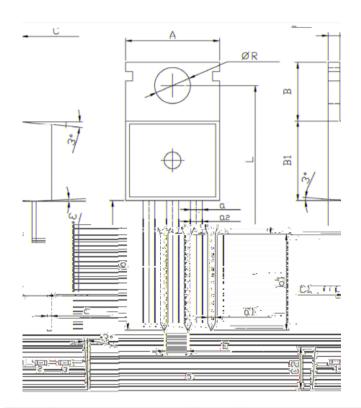
IDM Pulsed Drain Current

Symbol	Characteristics	Тур.	Max.	Units
	Junction-to-case			

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
V(BR)DSS	Drain-to-Source breakdown voltage	100			V	Vgs = 0V, ID	
RDS(on)	Static Drain-to-Source on-resistance		4.4	6	m	Vgs=10V, ID=20A	
VGS(th)	Gate threshold voltage	2		4	V	VDS=VGS,ID=250uA	
IDSS	Drain-to-Source leakage current T _j =25°C			1		Vps=100V,Vgs=0V,	
	Onto to Course forward last and			100		Vgs=20V,Vps=0V	
lgss	Gate-to-Source forward leakage		-100	- nA	Vgs=-20V,Vps=0V		
Qg	Total gate charge		43				
Qgs	Gate-to-Source charge		10		nC	Tj=25°C, Vgs=10V, Vps=50V,Ip=20A	
Qgd	Gate-to-Drain("Miller") charge		11				
td(on)	Turn-on delay time		13			Vgs=10V	
tr	Rise time		26			Vps=50V	
td(off)	Turn-Off delay time		45		ns	R _G =3 I _D =20A	
t f	Fall time		38				
Ciss	Input capacitance		3880			Vgs=0V	
Coss	Output capacitance		572		pF	Vps=50V	
Crss	Reverse transfer capacitance		17			f=100kHz	


-


Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
la	Continuous Source Current			167	^	MOSFET symbol
Is	(Body Diode)			167	Α	showing the
la	Pulsed Source Current			447	^	integral reverse
Isм	(Body Diode)			417	А	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	Is=20A, Vgs=0V
trr	Reverse Recovery Time		60		ns	I- 201 di/dt 1
Qrr	Reverse Recovery Charge		61		nC	IF=20A, di/dt=1



Typical Electrical and Thermal Characteristics

Unit:mm

Symbol	Dimensions I	n Millimeters		Dimensions In Millimeters		
	Min	Max	Symbol	Min	Max	
Α	9.8	10.2	С	1.2	1.4	
R	3.56	3.64	В	6.3	6.7	
L	15.7	16.1	B1	9.0	9.4	
b	12.6	13.6	C1	2.2	2.6	
b1	9.6	10.6	a1	0.7	0.9	
a	1.22	1.32	С	0.4	0.6	
E	2.34	2.74	C5	4.3	4.7	
αe	1.25	1.45				

ATTENTION:

Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest you before using any Silikron products described or contained herein in such applications.

Silikron assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silikron products described or contained herein.

Specifications of any and all Silikron products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the

equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer

Silikron Microelectronics (Suzhou) Co.,Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.