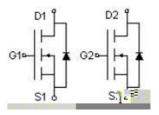

SSF6670


Main Product Characteristics:

V _{DSS}	60V		
R _{DS} (on)	65m (typ.)		
Ι _D	3.5A 1		

SOP-8

Marking and Pin Assignments

Schematic Diagram

Features and Benefits:

- Advanced MOSFET process technology
- Special designed for PWM, load switching and general purpose applications
- Ultra low on-resistance with low gate charge
- Fast switching and reverse body recovery
- 150°C operating temperature

Description:

It utilizes the latest processing techniques to achieve the high cell density and reduces the on-resistance with high repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in power switching application and a wide variety of other applications.

Absolute Max Rating:

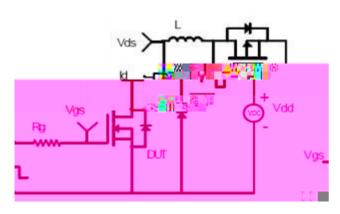
Symbol Parameter		Max.	Units	
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current ①	3.5		
I _D @ T _A = 70°C	Continuous Drain Current ①	2.8	А	
Ідм	Pulsed Drain Current ②	20	20	
P _D @ T _A = 25°C	Power Dissipation ③	2.4	W	
Vds	Drain-Source Voltage	60	V	
Vgs	Gate- to- Source Voltage	± 25	V	
Тј Тѕтс	Operating Junction and Storage Temperature Range	-55 to +150	°C	

Thermal Resistance

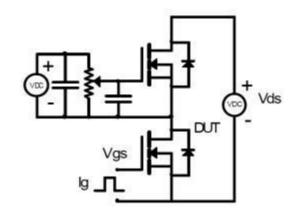
Symbol	Characterizes	Тур.	Max.	Units
R ja	Junction-to-ambient (t \leq 10s) ④	_	62.5	C/ W

Electrical Characterizes $@T_A=25C$ unless otherwise specified

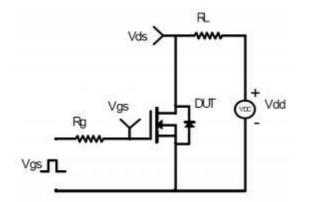
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V(BR)DSS	Drain- to- Source breakdown voltage	60			V	$V_{GS} = 0V, I_D = 250 \mu A$
		_	65	90	m	V_{GS} =10V, I_D = 3A
RDS(on)	Static Drain- to- Source on- resistance	_	80	120	m	$V_{GS}=4.5V, I_{D}=2A$
$V_{GS(th)}$	Gate threshold voltage	1		3	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
IDSS	Drain- to- Source leakage current	_		10	μA	$V_{DS} = 60 \text{V}, V_{GS} = 0 \text{V}$
	Onto the Oniversity forward locations		_	100	_	V _{GS} = 25V
lgss	Gate-to-Source forward leakage		_	- 100	nA	V _{GS} = -25V
Qg	Total gate charge		7	_		I _D = 3A,
Q _{gs}	Gate-to-Source charge		2	_	nC	V _{DS} =48V,
Q_{gd}	Gate-to-Drain("Miller") charge		3	_		$V_{GS} = 4.5V$
t _{d(on)}	Turn-on delay time		6	_		
tr	Rise time		5	_		V_{GS} =10V, V_{DS} =30V,
$t_{d(off)}$	Turn-Off delay time	_	16		ns	R _{GEN} =3, I _D =1A
t _f	Fall time		3	_		
Ciss	Input capacitance	_	500	_		V _{GS} = 0V
Coss	Output capacitance	_	50	_	pF	V _{DS} = 25V
Crss	Reverse transfer capacitance	_	40	_		f = 1 MHz

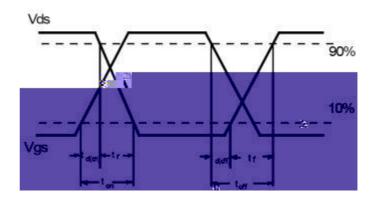

Source-Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			3.5	٨	MOSFET symbol
IS	(Body Diode) ①	3.5 A	A	showing the		
lsм	Pulsed Source Current		_	20	А	integral reverse
	(Body Diode) ①	—				p-n junction diode.
V_{SD}	Diode Forward Voltage	_	_	1.2	V	Is=1.7A, V _{GS} =0V
trr	Reverse Recovery Time	_	27		ns	$T_J = 25^{\circ}C, I_F = 4A,$
Qrr	Reverse Recovery Charge	_	32		nC	di/dt = 100A/µs



Test Circuits and Waveforms


EAS Test Circuit:


Gate Charge Test Circuit:

Switching Time Test Circuit:

Switching Waveforms:

Notes:

①Calculated continuous current based on maximum allowable junction temperature.

②Repetitive rating; pulse width limited by max. junction temperature.

- (3) The power dissipation PD is based on max. junction temperature, using junction-to-case thermal resistance.
- (4) The value of R $_{JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C

SSF6670

Typical Electrical and Thermal Characteristics

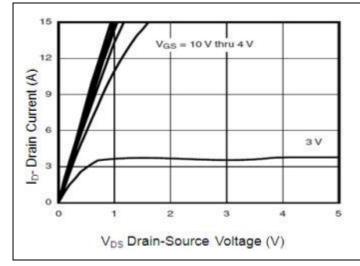


Figure1. Typical Output Characteristics

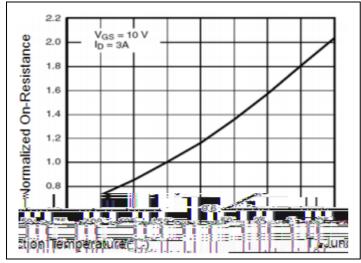


Figure3.Normalized On-Resistance vs.Junction Temperature

15

-9

V)

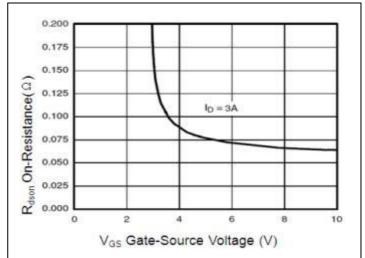


Figure2. Rdson vs. V_{GS}

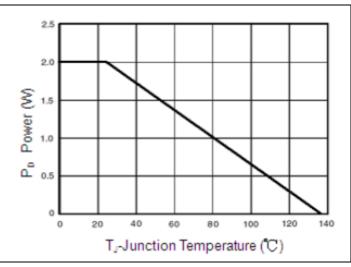


Figure4. Power Dissipation

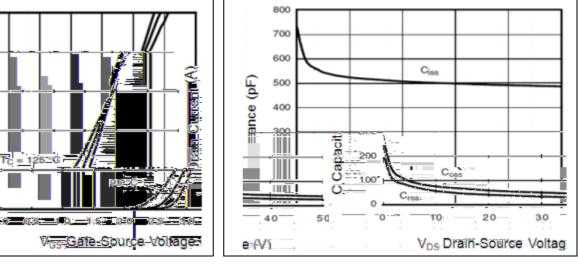


Figure5. Transfer Characteristics

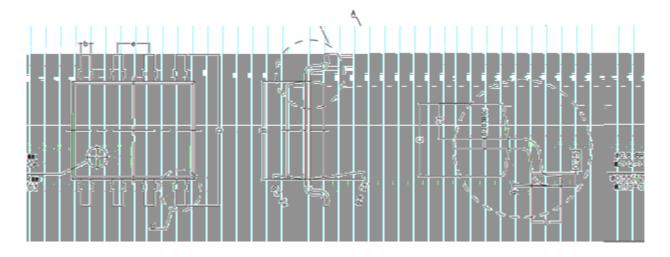
Figure6. Capacitance Characteristics

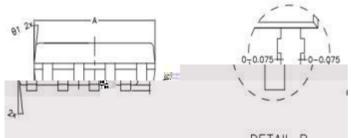
Figure7.Drain Current vs. On-Resistance	Figure8.Drain Current
Figure9.Source-Drain Diode Forward	Figure10.Safe Operation Area

Typical Electrical and Thermal Characteristics

SSF6670

Mechanical Data:


Option 1 SOP-8 Package Outline (Unit: mm)


Symbol	N dia	Nom	Max
Symbol	Min	Nom	Max
А	1.40	1.60	1.80
A1	0.05	0.15	0.25
A2	1.35	1.45	1.55
b	0.30	0.40	0.50
С	0.153	0.203	0.253
D	4.80	4.90	5.00
E	3.80	3.90	4.00
E1	5.80	6.00	6.20
L	0.45	0.70	

Mechanical Data:

Option 2 SOP-8 Package Outline (Unit: mm)

© Silikron Microelectronics (Suzhou) Co.,Ltd

DETAIL B

Symbol	Min No		om	Max
А	4.800	4.9	900	5.000
В	3.800	3.9	900	4.000
С	1.350	1.4	150	1.550
C1	0.650	0.7	' 00	0.750
D	5.840	6.0	040	6.240
L	0.400	0.600		0.800
b	0.350	0.400		0.450
h	0.020	0.100		0.250
е	1.270TYPE			
θ1	7°TYPE(8R)		12°TYPE(12R)	
θ2	7°TYPE(8R)		10°TYPE(12R)	
θ3	8°TYPE(8R)		12°TYPE(12R)	
θ4	8°TYPE(8R)		10°TYPE(12R)	
θ	0°~8°			

ATTENTION:

Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest you before using any Silikron products described or contained herein in such applications.

Silikron assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silikron products described or contained herein.

Specifications of any and all Silikron products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Silikron Microelectronics (Suzhou) Co.,Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited (I)9(i)-4((.)-0 Tcβ(u)-3(c)711((I)4(o)-3(n)9(s)-66(s)-6(e)-c)5)-3(ft)-3s an